Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining
نویسندگان
چکیده
Non-homologous end joining (NHEJ) is the main repair pathway for DNA double-strand breaks (DSBs) in cells with limited 5' resection. To better understand how overhang polarity of chromosomal DSBs affects NHEJ, we made site-specific 5'-overhanging DSBs (5' DSBs) in yeast using an optimized zinc finger nuclease at an efficiency that approached HO-induced 3' DSB formation. When controlled for the extent of DSB formation, repair monitoring suggested that chromosomal 5' DSBs were rejoined more efficiently than 3' DSBs, consistent with a robust recruitment of NHEJ proteins to 5' DSBs. Ligation-mediated qPCR revealed that Mre11-Rad50-Xrs2 rapidly modified 5' DSBs and facilitated protection of 3' DSBs, likely through recognition of overhang polarity by the Mre11 nuclease. Next-generation sequencing revealed that NHEJ at 5' DSBs had a higher mutation frequency, and validated the differential requirement of Pol4 polymerase at 3' and 5' DSBs. The end processing enzyme Tdp1 did not impact joining fidelity at chromosomal 5' DSBs as in previous plasmid studies, although Tdp1 was recruited to only 5' DSBs in a Ku-independent manner. These results suggest distinct DSB handling based on overhang polarity that impacts NHEJ kinetics and fidelity through differential recruitment and action of DSB modifying enzymes.
منابع مشابه
The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae.
In wild-type yeast, the repair of a 169 bp double-strand gap induced by the restriction enzymes ApaI and NcoI in the URA3gene of the shuttle vector YpJA18 occurs with high fidelity according to the homologous chromosomal sequence. In contrast, only 25% of the cells of rad5-7 and rad5 Delta mutants perform correct gap repair. As has been proven by sequencing of the junction sites, the remaining ...
متن کاملEffects of double-strand break repair proteins on vertebrate telomere structure
Although telomeres are not recognized as double-strand breaks (DSBs), some DSB repair proteins are present at telomeres and are required for telomere maintenance. To learn more about the telomeric function of proteins from the homologous recombination (HR) and non-homologous end joining pathways (NHEJ), we have screened a panel of chicken DT40 knockout cell lines for changes in telomere structu...
متن کاملDNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination
Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process duri...
متن کاملHuman CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair*S⃞
In G(0) and G(1), DNA double strand breaks are repaired by nonhomologous end joining, whereas in S and G(2), they are also repaired by homologous recombination. The human CtIP protein controls double strand break (DSB) resection, an event that occurs effectively only in S/G(2) and that promotes homologous recombination but not non-homologous end joining. Here, we mutate a highly conserved cycli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016